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The solution of the planar problem of heat conduction and thermoelasticity in the case of a plate with a 

periodic system of straight thin elastic inclusions of finite length is constructed using the methods of the 

theory of functions of a complex variable. Integral representations are obtained for the complex 

temperature and stress-strain state potentials, the system of integro-differential resolvents of the 

problem is constructed and expressions are presented for the stress intensity factors at the vertices of 

the inclusions. A numerical analysis of the solution of the problem is carried out using the method of 

mechanical quadratures. 

1. FORMULATION OF THE PROBLEM 

An isotropic plate (matrix) containing a system of straight thin-walled elastic inclusions of 
length 21 and thickness 211 is considered. The matrix is under the action of a thermal flux at 
infinity of intensity q_. It is assumed that the lateral edges of the plate are thermally insulated 
and that there is ideal force and thermal contact on the lines of separation of the materials. It is 
required to determine the effect of the inclusions on the magnitude and character of the 
temperature-field distribution and to investigate the thermoelastic state in the composite under 
consideration. 

We introduce the system of coordinates x,O,y, (Fig. 1) with the X, axis passing through the 
centres of the inclusions and, also, a local system of coordinates xy, the axes of which are 
directed along the axes of symmetry of an inclusion. Let a be the angle of inclination of an 
inclusion to the x1 axis and d be the distance between the centres of the inclusions. Quantities, 
referring to inclusions, are denoted by a zero subscript. Since all the inclusions are under 
identical conditions, the boundary conditions are written for just a single inclusion. 

The conditions of mechanical and thermophysical contact of an inclusion with the surround- 
ing material have the form 

(Or - iz,)’ = (oy - iz,)f, ~(UfiZ));+iEg=ax -Qi+iU)+ 

(T+iT& =(T+iq)‘, k, &(T+iq); =t&(T+iq)* 

(1.1) 

(l-2) 
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Fig. 1. 

The boundary values of functions at the upper edge (y = +h) and the lower edge (y =A) of 
an inclusion are denoted by plus and minus signs q(x, y) is an auxiliary harmonic function and 
k,, and k are the thermal conductivities of the material of the inclusion and the plate 
respectively. 

2. THE HEAT-CONDUCTION PROBLEM 

We know [l] that the temperature field in a homogeneous isotropic plate can be defined by 

the relationships 

F;(z)+Q,(z)=T+irt, F(z)+Q(z)=&T+iq)/& 

F(z) - Q<z> = - iaV + itl) 1 dy, F(z) = F;‘(z), Q(z) = Q,‘(z) (2.1) 

where F,(z) and Q,(z) are the functions that are piecewise holomorphic in the complex plane. 
Taking account of the thin-walled nature of an inclusion, we model it with a line provided 

with specific thermophysical properties. For this purpose, we expand the complex potentials 
F,(z) and Q,(z) in series in the parameter h. Neglecting quantities of a higher order of 
smallness compared with h, from (2.1) we find 

a 
XEL,- ax tT+iv)o+ - $ (T+ iq), = 2hp’(x), &V+iG - aY b(T+iq)i =-2&‘(x) 

$(T+iq)i+&(T+iq), =2&x), $(T+iq)i -$(T+iq)i =2p(x) 
(2.2) 

where g(x) and p(x) are functions which have to be determined and L = [-I, l] is a segment of 
the real axis. 

Piecewise holomorphic functions F(z) and Q(Z) are introduced in the case of the matrix. 
Here, the boundary conditions from the edges of an inclusion are brought together on the real 
axis Ox. On satisfying conditions (1.1) using relationships (2.1) and taking account of the 
relation (2.2), we obtain the following boundary conditions 

XE L,[F(x)+Q(x$ -[F(x)+Q(x)]- =2i&g’(x), 

[Ox) -Q(x)]+ -[F(x) - Q<x>l- = 2hp’Cx) 

x E L [F(x) + Q(x)]+ f [F(x) + Q<x>l- = 2g(x), 

[F(x) - Q(x)]+ + [F(x) - Q<x>l- = - 2ik,p(x) 

(2.3) 

(2.4) 
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where k1 = k, I k. 
On solving the linear coupling problems (2.3), we find 

F(q) = & il ctg(; &?‘a -z,)) &g’(t)-ip’(r)] df +c 

Q(z,)=~_ h i,eg(~(fe”-q))l~,p’o+ip’(t)ldr+c 

c = - q_e+(2k)-‘ , 2, = x, + iy, 

(2.5) 

where cp is the angle between the Ox axis and the principal direction of the thermal flux at 
infinity of intensity q_,. 

If, now, we satisfy conditions (2.4), taking account of (2.5), we obtain a system of integro- 
differential equations for determining the unknown functions g(x) and p(x) 

X E L i?(X) - i j, [k@‘(t) K(t - X)+ p’(t) L(t - x)] fff = - aq,k-* cos(a - 9) (2.6) 

Here 

Wx)+ 3 jl [W(t) Ut - X)-p’(t) K(t - X)] dt = bq,k-’ sin(a - fp) 

a = 1 - t?, b = 1 - k,g,Z = min(l,k;‘), K(x) + Z(x) = Qctg(Qx), Q = wia&’ 

To Eqs (2.6), it is necessary to add the relationships 

i g’(t) dt = 0, i p’(r) dr = 0 
-1 -I 

(2.7) 

which are the conditions for the temperature and the heat balance to be unique on passing 
around the contour of an inclusion. 

We shall seek a solution of the system of equations (2.6) and (2.7) in the form 

g’(x) = Z(x) / JS, p’(x) = Y(x) / &F (2.8) 

Using the method of mechanical quadratures [2], we arrive at the system of linear algebraic 
equations for finding the value of the unknown functions Z(X) and Y(X) at the nodal points 

: IrQ(r,) A(m, r) - Nk,Z(r,,,) K(l(t, 
m=l 

-x,)) + Y(t,) L(l(t, -x,))]} = - Maq,k-’ cos(a - cp) 

f Ixk,Y(tm)A(m,r)+h[k~Z(rm) Ul(tm -x,))-Y(t,) K(l(t, -x,))])= 
m=l 

= Mbq_,k-’ sin(a - cp) 

Here 

(2.9) 

tm 

2nt-1 
=cos-R, m=l,2 ,..., 

2M 
M; x, =co+ r=l,2,...,M-1 

um-I(x)=~~, T,(X)=COS(PZUCCOSX) 
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Having a solution of the system of algebraic equations (2.9), it is possible to construct an 
interpolating Lagrange polynomial for the functions Y(x) and Z(x) f3] using the Chebyshev 
nodal points 

(2.10) 

By substituting the expressions for the functions g’(x) and p’(x) (2.8) into (2.5) and taking 
account of (2.10), the complex potentials F(z,) and Q(z,) can be represented in the form 

(2.11) 

Here 

Note that, if one puts k, = 0 in (2.11), we obtain the solution of the heat-conduction problem 
for a plate with a periodic system of thermally insulated cracks [S]. If, however, one puts k,, = k, 
we obtain the solution of the heat-conduction problem for a plate without inclusions. 

3. THERMOELASTICITY PROBLEMS 

The thermoelastic state of an isotropic plate can be 
cP(z) and Y(z), starting out from the formulae [l] 

described using the complex potentials 

CT,, +0x = 2[#(z) + @?)I, by - iz, = Wz) + R(z) (3.1) 

Here 

y(z) = 3 jIF(z)+ ml dz 
-- 

R(z)=cpo+zcP’o+wz), Q(z)=ecz> 

K = 3 - 4v, H = 2aE in the case of plane strain II = (3 - v)/(l+ v), H = 2&Z/(1 + v) for the plane 
stressed state a is the temperature coefficient of linear expansion, v is Poisson’s ratio, E is 
Young’s modulus and u is the Lame coefficient. 

Taking account of the thin-walled nature of an inclusion, let us expand the complex poten- 
tials so(t), YJz) and u/o,(z) in relationships (3.1) in a Taylor series in the neighbourhood of a 
point x on the real axis. 

On retaining terms of an order not higher than h in the final expansions, we obtain the 
relations 

XEL,(by - iz& - (oy -i%& = 2&K’(x) 

-$u+iu); = ih[M’(x)+ H~w,‘(X)l! po 

(CT), - iz, >Q + my - iz, 1; =2yo[(l-+co) K(x)+2M(x)+2K(x)+21Cbfx)l (3.2) 
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$(u+iu); +$ (u+iv)i = ~,‘YO[21C&(X)+(K0 -1) M(X)-~K~-~M(~)~+H,Y~(~)I~O 

Here 

yo =(l+lca), E=ceia 

where 7’,‘, is the temperature of the inclusion and K(x) and M(x) are unknown functions. 
Relations (3.2) provide a model of a thin inclusion for the planar problem of thermo- 

elasticity. 
Making use of the conditions of ideal mechanical contact (1.1) and, also, relations (3.2) and 

(3.1) for determining the complex potentials O(z) and Y(z), we shall have the following 
boundary-value problems 

x E L, [Q(x) + R(x)]+ -[@(x) + R(x)]_ = 2ihK’(x) 

[K@(X)-R(x)+HYl(x)]+ -[K@(X)-R(x)+HY,(x)l- = 

=2ih~o[M’(x)-M~(x)+HoY~(x)l (3.3) 

[Q(x)+R(x)]++[@(x)+R(x)]- =2yo[(l-~o)K(~)+2K(x)+2M(x)+2M(x)1 

[K@(X) - R(x) +‘HYl (x)1+ + [M’(x) - R(x) + HY, (x)1- = 

= 2PoYo[2’%~(x)+ (‘Co - 1) M(x) - iK(x) - 2M(x)] + 2~oHoYo(x) - 2ie; (3.4) 

Here 

E; = -2p&o, lu; =o,HC, po =p/po, 00 =~nw%‘) 

Z=emia(zt -7cdk) 

and T, is the value of the temperature at infinity. 
We satisfy conditions (3.3), if the complex potentials are represented in the form 

@(z,)=yz J ~~~~~~+P,~~(t~lctg~~~~,z*~1df-y,Y~(z~ 
-I 

y(q) = Y2 ii [P&(t)] - KKi((t)l ctg[P(t,zl )I eeia - (3.5) 
-I 

-Ilrd-‘[zlda + t(1 - e21a)] cosec2[P(t,z,)]+eia ctg[P(t,z,)]) x 

X [K~(O+Bf$~(t)l] dt-y3hebia(2d)-’ i {[k,go(t)+ 
-1 

+@0W -eZia(~,go(~) - $,(tNl ctg[P(t,zl )I - [k,g,(t) - 

-ip, (t)] Ctemia _ teia + z) rcd-le2ia cosec2[P(t, zI )I] dr 

y = [7C(l+ K)]-‘, &(x)=&x), Mi(x)=M’(x)-M;(x).+HoY;(x), 

y2 = ynd-‘eia, y3 = ~ryH, P(r, q ) = nd-’ (teia - Z, ) 
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On substituting the expressions for the functions Q(z) and Y(z) into relationships (3.4), we 
arrive at a system of integro-differential equations in the unknown functions Z&(x) and ~~~~) 

~[~+~*~]G(f-x)}dt =A(x) 
-- 

PoYomo~o(~) + (Ko -l)M()(x)-2&j(x)-2lu()(x)]+ 

+c1 i b-mGo)+S,~~(ol g(r-x)+[--K[K~(r)eP,M~(t)lg(t- x)+ 
-1 

] G(t - x)} dt = B(x) + i&i 

(3.6) 

Here 
c, = hy, h = d / 1, q = - ihe-ia sin a, g(x) = Qctg( @) 

G(x) =: &-l(e-‘a - e-3ia ) [ctg(Qd - Q~co=&Q~)l 

A(x)=-4yoRe[Heo(fT,+tr)-HY,~x~]-C(x) 

+2 HeY()(x)-Hoe 
[ 

- (+ TO +Zx)]}+C(x)+ W(+ T, +Ex)-&-$~~~(~~ 

C(x)=qHn C (k,z, yif' { -iy,)Re[P,(~)]+(k,z,+iy,)S,(~)} 

1 

(x + &-‘a + ip+e’@+)’ 
+ . . . Ii 

,io+ 

R+ (x + X&ia + R+eTie+ )’ 

-... 1 
R* = {[(AT - l)* + 6*] [(AT + l)* + 6*]jK 

2rD+ = 
2n-y- -y+, A-+lcO A- -l>O 

a-y- +y+, A-+l>O’ 3~+p--fS+, A--l<0 

p’= amtg 6, y*=arctg ,-“+l 
I I 
A+*1 F-I 

A* = x 1: Xkcosa, S = hksin a 

A* = x f hkcosa, 6 = hksin a 

(the dots in the square brackets, as previously, denote a term in which the plus superscript has 
been replaced by a minus). The following relationships 

J Ki(t)dt=O, i M~(t)dr=O, Im i tK~(t)dr=O 
-I -1 -1 
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which are the conditions for the equilibrium of an inclusion and the conditions for the 
uniqueness of the displacements on passing around the contour of the inclusion, have to be 
added to the system of equations (3.6). 

Having passed to the corresponding limit in (3.6), we obtain the singular integral equations 
for a plate with a periodic system of cracks [5] and inelastic inclusions. 

The asymptotic form of the stress-strain state in the neighbourhood of the vertices of an 
inclusion have been given in [4] and the stress intensity factors (SIF) are determined using the 
formulae 

We will seek the solution of the system of equations (3.6) in the form 

K;(Lx)=u(x)/d=, ~;(fx)=U(x)l~ 

Here, u(x) and U(X) are unknown functions, the values of which at the nodal points are 
determined from the system of linear algebraic equations obtained by the method of 
mechanical quadratures [2]. 

4. NUMERICAL ANALYSIS 

Numerical investigations of the generalized SIF at the vertices of thin inclusions as a function of 
different geometrical and thermophysical parameters of the problem were carried out for the case when a 
constant temperature T0 is maintained in a plate with a periodic system of thin linear inclusions. The 

results are shown in Figs 2-4. 

Graphs of the dimensionless SIF K;= K,I(HT, 41) (i = 1, 3) as a function of the relative stiffness of a 

thin inclusion for various values of the parameter a* = a,, /a and the dimensionless distance between the 

centres of neighbouring inclusions dll are shown in Figs 2 and 3. The results for K; are represented by the 

solid lines while those for KI are represented by the dashed lines. Note that, in the case under consider- 
ation, stresses and displacements in the composite occur not on account of the perturbation of the 
temperature field but as a result of the differences in the coefficients of linear thermal expansion of the 
materials of the matrix and the inclusions. Under such conditions G = K,’ = 0. 

Curves 1,4 and 7 in Fig. 2 are drawn for a value of the parameter a* = 0, curves 2, 5 and 8 for a* = 0.1 
and curves 3,6 and 9 for a* = 0.5. Lines 1-3 correspond to a relative distance between inclusions dll = 25 
(actually, we have the case of a single inclusion in an unbounded plate and these results are identical to 

those presented in [4]). Lines 4-6 are drawn for d/l = 3.0 and lines 7-9 for d/l = 2.5. 

Results for a* > 1 are shown in Fig. 3. The even curves are drawn for a value a* = 2 and the odd curves 

for a* = 3. Note that, when a* = 1, all of the SIF are equal to zero, that is, there is no perturbation of the 
stressed state in the neighbourhood of the vertices of the inclusions. Graphs 1 and 2 are drawn for 

d/l= 2.5, graphs 3 and 4 for dll = 3.0 and graphs 5 and 6 for d/l= 2.5. 

The nature of the change in the generalized SIF K; as a function of the angle of orientation of an 
inclusion is shown by the solid curves in Fig. 4 for a* = 0, and by the dashed curves for a* = 0.5. Note 
that, when a* = 2, the required relations are obtained from the solid curves in Fig. 4 by a symmetric 
reflection in the abscissa axis. Here, the following notation for the curves has been introduced. Curve 1 
represents the behaviour of K’, for an absolute rigid inclusion. Curves 2 and 3, respectively, give the 
values of KS, K; for an elastic inclusion with a relative stiffness pLo/p = 10 and curve 4 represents the 
nature of the change in K: for an inclusion with a relative stiffness of 0.1. Note that, in the case under 
consideration, the remaining quantities are small compared with those which have been presented and are 
therefore not shown in the figures. 
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